Abstract: Objective To evaluate the application value of laparoscopic anus preserving surgery for low rectal cancer patients.MethodsEighty-five patients with low rectal cancers were studied respectively.There were forty-five patients in laparoscopic operation group treated with laparoscopic anus preserving operation,and forty patients in open operation group.Operation time,intra-operative hemorrhage,length of operative incision,resuming time of bowel function,postoperative drainage time and volume,complications such as anastomotic fistula and incision infection were compared between the two groups.ResultsIn the laparoscopic operation group and the open operation group,it showed significant differences in operation time of(169 ±40)min vs.(120±50)min,the hemorrhage volume of(56 ±23)ml vs.(248±92)ml(P <0.05),the length of operative incision of(4.0 ±1.3)cm vs.(15.0 ±3.2)cm(P <0.05),the resuming time of bowel functionof(37 ±11)h vs.(73 ±12)h(P <0.05),the postoperative drainage volume of(31 ±15)ml vs.(385 ±65)ml(P <0.05),the rate of anastomotic leakage of 2.2%vs.10%(P <0.05),and the rate of incision infection of 0 vs.10%(P <0.05).ConclusionIt demonstrates advantages of less surgical trauma,less intra-operative bleeding,quicker postoperative recovery and few postoperative complications of laparoscopic anus preserving surgery for low rectal cancer.It is feasible,safe and worthy of clinical popularization and application.
江晓华,郑子晗,周鹏,周秩武,万宇飞,张天顺,张伟. 腹腔镜与开腹低位直肠癌保肛手术临床疗效比较[J]. 中国现代手术学杂志, 2017, 21(2): 81-84.
JIANG Xiao-hua,ZHENG Zi-han,ZHOU Peng,ZHOU Zhi-wu,WAN Yu-fei,ZHANG Tian-shun,ZHANG Wei. Comparison of the Clinical Effects of Laparoscopic and Open Anus Preserving Surgery for Low Rectal Cancer. Chinese Journal of Modern Operative Surgery, 2017, 21(2): 81-84.
[1] 钱前, 曾大力. 水稻籼粳交 DH 群体苗期的耐冷性QTLs分析[J]. 科学通报, 1999, 44(22): 2402-2407. QIAN Q, ZENG D L. Analysis on QTLs of cold resistance of DH populations of hybrids of japonica and indica rice in seedling stage[J]. Chinese Science Bulletin, 1999, 44(22): 2402-2407.(in Chinese[1]Siegel R,Desantis C,Jemal A.Colorectal cancer statistics,2014[J].CA Cancer J Clin,2014 ,64(2):104-117.doi:10.3322/caac.21220.|[2]Siegel R,Ma J,Zou Z,Jemal A.Cancer statistics,2014[J].CA Cancer J Clin,2014 ,64(1):9-29.doi:10.3322/caac.21208.|[3]van Gijn W,Marijnen CA,Nagtegaal ID,et al.Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer:12-year follow-up of the multicentre,randomised controlled TME trial[J].Lancet Oncol,2011,12(6):575-582.doi:10.1016/S1470-2045(11)70097-3.|[4]van der Pas MH,Haglind E,Cuesta MA,et al.Laparoscopic versus open surgery for rectal cancer(COLOR II):short-term outcomes of arandomised,phase 3 trial[J].Lancet Oncol,2013,14(3):210-218.doi:10.1016/S1470-2045(13)70016-0.|[5]Kang SB,Park JW,Jeong SY,et al.Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvantchemoradiotherapy(COREAN trial):short-term outcomes of an open-label randomisedcontrolled trial[J].Lancet Oncol,2010 ,11(7):637-645.doi:10.1016/S1470-2045(10)70131-5.|[6]Stevenson AR,Solomon MJ,Lumley JW,et al.Effect of Laparoscopic-Assisted Resection vs Open Resection on Pathological Outcomes inRectal Cancer:The ALaCaRT Randomized Clinical Trial[J].JAMA,2015,314(13):1356-1363.doi:10.1001/jama.2015.12009.|[7]Fleshman J,Branda M,Sargent DJ,et al.Effect of Laparoscopic-Assisted Resection vs Open Resection of Stage II or III Rectal Cancer onPathologic Outcomes:The ACOSOG Z6051 Randomized Clinical Trial[J].JAMA,2015,314(13):1346-1355.doi:10.1001/jama.2015.10529.|[8]Trastulli S,Cirocchi R,Listorti C,et al.Laparoscopic vs open resection for rectal cancer:a meta-analysis of randomized clinical trials[J].Colorectal Dis,2012,14(6):e277-e296.doi:10.1111/j.1463-1318.2012.02985.x.|[9]Hua L,Wang C,Yao K,et al.Is the incidence of postoperative anastomotic leakage different between laparoscopic and opentotal mesorectal excision in patients with rectal cancer?A meta-analysis based on randomizedcontrolled trials and controlled clinical trials[J].J Cancer Res Ther,2014,10 Suppl:272-275.doi:10.4103/0973-1482.151491.|[10]陈文轩,蒋伟忠,刘星,等.腹腔镜与开腹中低位直肠癌根治术后并发症比较的Meta分析[J].中华胃肠外科杂志,2013,16(12):1274-1179.|[11]Arezzo A,Passera R,Scozzari G,et al.Laparoscopy for rectal cancer reduces short-term mortality and morbidity:results of asystematic review and meta-analysis[J].Surg Endosc,2013 ,27(5):1485-1502.doi:10.1007/s00464-012-2649-x.
[2] 陈大洲, 钟平安. 利用 SSR 标记定位东乡野生稻苗期耐冷性基因[J]. 江西农业大学学报, 2002, 24(6): 753-756. CHEN D Z, ZHONG P A. Identification of QTLs for cold tolerance at seedling stage in Dongxiang wild rice(Oryza rufipogon Griff.) by SSR markers[J]. Acta Agriculturae Universitatis Jiangxiensis(Natural Sciences Edition), 2002, 24(6): 753-756. (in Chinese with English abstract) [3] 詹庆才. 水稻苗期耐冷性QTLs的分子定位[J]. 湖南农业大学学报(自然科学版), 2003, 29(1): 7-11. ZHAN Q C. Molecular mapping of QTLs for seedling cold tolerance in rice[J].Journal of Hunan Agricultural University(Natural Sciences), 2003, 29(1): 7-11. (in Chinese with English abstract) [4] 刘之熙, 刘伟, 肖子发, 等. 水稻苗期耐冷性 QTLs 的定位[J]. 杂交水稻, 2010,25(5): 59-63. LIU Z X, LIU W, XIAO Z F, et al. Mapping of QTLs associated with tolerance to chilling injury in rice[J].Hybrid Rice, 2010,25(5): 59-63. (in Chinese with English abstract) [5] 郑加兴, 马增凤, 宋建东, 等. 普通野生稻苗期耐冷性QTL的鉴定与分子定位[J]. 中国水稻科学, 2011, 25(1): 52-58. ZHENG J X, MA Z F, SONG J D, et al. Identification and mapping of QTLs for cold tolerance at the seedling stage in common wild rice(Oryza rufipogon) [J]. Chinese Journal of Rice Science, 2011, 25(1): 52-58. (in Chinese with English abstract) [6] 夏瑞祥, 肖宁, 洪义欢, 等. 东乡野生稻苗期耐冷性的QTL 定位[J]. 中国农业科学, 2010, 43(3): 443-451. XIA R X, XIAO N, HONG Y H, et al. QTLs mapping for cold tolerance at seedling stage in Dongxiang wild rice (Oryza rufipogon Griff.) [J]. Scientia Agricultura Sinica, 2010, 43(3): 443-451. (in Chinese with English abstract) [7] BARRANGOU R. RNA-mediated programmable DNA cleavage [J]. Nature Biotechnology, 2012, 30(9): 836-838. [8] GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468(7320): 67-71. [9] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ [J]. Nature, 2011, 471(7340): 602-607. [10] 王昕, 张志强, 张智英. TALE 核酸酶介导的基因组定点修饰技术[J]. 中国生物化学与分子生物学报, 2012, 28(3): 211-216. WANG X, ZHANG Z Q, ZHANG Z Y. Genome targeting modification technology based on TALE nuclease engineering[J]. Chinese Journal of Biochemistry and Molecular Biology, 2012, 28(3): 211-216. (in Chinese with English abstract) [11] MAEDER M L, LINDER S J, CASCIO V M, et al. CRISPR RNA-guided activation of endogenous human genes [J]. Nature Methods, 2013, 10(10): 977-979. [12] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121): 823-826. [13] YANG H, WANG H, SHIVALILA C S, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 154(6): 1370-1379. [14] WANG H, YANG H, SHIVALILA C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 153(4): 910-918. [15] LI W, TENG F, LI T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems [J]. Nature Biotechnology, 2013, 31(8): 684-686. [16] HWANG W Y, FU Y, REYON D, et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system [J]. Plos One, 2013, 8(7): e68708. [17] JAO L E, WENTE S R, CHEN W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34): 13904-13909. [18] DICARLO J E, NORVILLE J E, MALI P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Research, 2013, 41(7): 4336-4343. [19] YU Z, REN M, WANG Z, et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila[J]. Genetics, 2013, 195(1): 289-291. [20] BASSETT A R, TIBBIT C, PONTING C P, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system [J]. Cell Reports, 2013, 4(1): 220-228. [21] DICKINSON D J, WARD J D, REINER D J, et al. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination [J]. Nature Methods, 2013, 10(10): 1028-1034. [22] JIANG W, ZHOU H, BI H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice [J]. Nucleic Acids Research, 2013, 41 (20): e188. [23] LI J F, NORVILLE J E, AACH J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nature Biotechnology, 2013, 31(8): 688-691. [24] MIAO J, GUO D, ZHANG J, et al. Targeted mutagenesis in rice using CRISPR-Cas system [J]. Cell Research, 2013, 23(10): 1233-1236. [25] SHEN C X, LI D, HE R H, et al. Comparative transcriptome analysis of RNA-Seq data for cold-tolerant and cold-sensitive rice genotypes under normal and cold stress [J]. Journal of Plant Biology, 2014, 57(6): 337-348. [26] 沈春修, 李丁, 夏玉梅, 等. 东乡野生稻苗期低温诱导表达新基因BGIOSGA013293-DX的过表达载体构建与转化[J]. 杂交水稻, 2015, 30(3): 66-70. SHEN C X, LI D, XIA Y M, et al. Construction of over-expression vector of BGIOSGA013293-DX,a novel gene of cold inducible expression,in Dongxiang wild rice and its genetic transformation into rice[J]. Hybrid Rice, 2015, 30(3): 66-70. (in Chinese with English abstract) [27] 牟少亮, 蔡金森, 严雁, 等. 水稻Pi-ta启动子的克隆及其功能分析[J]. 核农学报, 2013,27(12): 1803-1808. MU S L, CAI J S, YAN Y, et al. Cloning of Pi-ta promoter and its function analysis in rice[J]. Journal of Nuclear Agricultural Sciences, 2013,27(12): 1803-1808. (in Chinese with English abstract) [28] 王北艳, 殷奎德. 转rd29A-ICE1冷诱导基因水稻提高抗寒性研究[J]. 核农学报, 2013,27(6): 731-735. WANG B Y, YIN K D. Integratting cold regulative gene rd29A-ICE1 into rice improves cold tolerance[J]. Journal of Nuclear Agricultural Sciences, 2013,27(6): 731-735. (in Chinese with English abstract) [29] TOKI S, NAHO H, KAZUKO O. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice [J]. The Plant Journal, 2006, 47(6): 969-976. [30] 李丁. 以潮霉素为筛选标记的水稻叶绿体转化体系的建立[D]. 长沙:中南大学, 2013. LI D. Establishment of the chloroplast genetic transformation system in rice by using hygromycin B as selection pressure[D]. Changsha: Zhongnan University, 2013. (in Chinese with English abstract) [31] RYAN D E, LEVIN W. Purification and characterization of hepatic microsomal cytochrome P450 [J]. Pharmacology & Therapeutics, 1990, 45(2): 153-239. [32] 李慧, 丛郁, 常有宏, 等. 杜梨胆碱单加氧酶基因克隆及胁迫表达[J]. 西北植物学报, 2012, 32(6):1093-1098. LI H, CONG Y, CHANG Y H, et al. Cloning and expression analysis of a choline monooxygenase gene in Pyrus betulaefolia Bunge under abiotic stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6):1093-1098. (in Chinese with English abstract) [33] 尹录录. 冷胁迫诱导青蒿素合成基因表达及其钙依赖信号转导相关性研究[D]. 广州:广州中医药大学, 2008. YIN L L. Chilling stress-induced overexpression of artemisinin biosynthetic genes and mechanism of Ca 2+ -dependent signal transduction[D]. Guangzhou: Guangzhou University of Chinese Medicine,2008. (in Chinese with English abstract) [34] 潘丽娟, 黄骥, 王州飞, 等. 水稻胆碱单加氧酶基因的克隆与表达分析[J]. 分子植物育种, 2007, 5 (1): 8-14. PAN L J, HUANG J, WANG Z F, et al. Molecular cloning and expression of OsCMO encoding a putative choline monooxygenase in rice (Oryza sativa L.) [J].Molecular Plant Breeding, 2007, 5 (1): 8-14. (in Chinese with English abstract)